叙述并证明正弦定理

http://www.economicdaily.com.cn 时间:2015-02-14 14:49 字号:

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)

证明:

方法1.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

方法2.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D. 连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

方法3

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0